11 research outputs found

    Robust Semantic Communications with Masked VQ-VAE Enabled Codebook

    Full text link
    Although semantic communications have exhibited satisfactory performance for a large number of tasks, the impact of semantic noise and the robustness of the systems have not been well investigated. Semantic noise refers to the misleading between the intended semantic symbols and received ones, thus cause the failure of tasks. In this paper, we first propose a framework for the robust end-to-end semantic communication systems to combat the semantic noise. In particular, we analyze sample-dependent and sample-independent semantic noise. To combat the semantic noise, the adversarial training with weight perturbation is developed to incorporate the samples with semantic noise in the training dataset. Then, we propose to mask a portion of the input, where the semantic noise appears frequently, and design the masked vector quantized-variational autoencoder (VQ-VAE) with the noise-related masking strategy. We use a discrete codebook shared by the transmitter and the receiver for encoded feature representation. To further improve the system robustness, we develop a feature importance module (FIM) to suppress the noise-related and task-unrelated features. Thus, the transmitter simply needs to transmit the indices of these important task-related features in the codebook. Simulation results show that the proposed method can be applied in many downstream tasks and significantly improve the robustness against semantic noise with remarkable reduction on the transmission overhead.Comment: 16 pages, 11 figures. arXiv admin note: text overlap with arXiv:2202.0333

    A Unified Multi-Task Semantic Communication System for Multimodal Data

    Full text link
    Task-oriented semantic communication has achieved significant performance gains. However, the model has to be updated once the task is changed or multiple models need to be stored for serving different tasks. To address this issue, we develop a unified deep learning enabled semantic communication system (U-DeepSC), where a unified end-to-end framework can serve many different tasks with multiple modalities. As the difficulty varies from different tasks, different numbers of neural network layers are required for various tasks. We develop a multi-exit architecture in U-DeepSC to provide early-exit results for relatively simple tasks. To reduce the transmission overhead, we design a unified codebook for feature representation for serving multiple tasks, in which only the indices of these task-specific features in the codebook are transmitted. Moreover, we propose a dimension-wise dynamic scheme that can adjust the number of transmitted indices for different tasks as the number of required features varies from task to task. Furthermore, our dynamic scheme can adaptively adjust the numbers of transmitted features under different channel conditions to optimize the transmission efficiency. According to simulation results, the proposed U-DeepSC achieves comparable performance to the task-oriented semantic communication system designed for a specific task but with significant reduction in both transmission overhead and model size

    Research Roadmap of Service Ecosystems: A Crowd Intelligence Perspective

    Get PDF
    With the mutual interaction and dependence of several intelligent services, a crowd intelligence service network has been formed, and a service ecosystem has gradually emerged. Such a development produces an ever-increasing effect on our lives and the functioning of the whole society. These facts call for research on these phenomena with a new theory or perspective, including what a smart society looks like, how it functions and evolves, and where its boundaries and challenges are. However, the research on service ecosystems is distributed in many disciplines and fields, including computer science, artificial intelligence, complex theory, social network, biological ecosystem, and network economics, and there is still no unified research framework. The researchers always have a restricted view of the research process. Under this context, this paper summarizes the research status and future developments of service ecosystems, including their conceptual origin, evolutionary logic, research topic and scale, challenges, and opportunities. We hope to provide a roadmap for the research in this field and promote sound development

    Multi-Objective Energy-Efficient Resource Allocation for Multi-RAT Heterogeneous Networks

    No full text

    Energy-Efficient User Association and Resource Allocation for Multistream Carrier Aggregation

    No full text

    Collaborative Cloud and Edge Computing for Latency Minimization

    No full text

    Deep-Unfolding for Next-Generation Transceivers

    Full text link
    The stringent performance requirements of future wireless networks, such as ultra-high data rates, extremely high reliability and low latency, are spurring worldwide studies on defining the next-generation multiple-input multiple-output (MIMO) transceivers. For the design of advanced transceivers in wireless communications, optimization approaches often leading to iterative algorithms have achieved great success for MIMO transceivers. However, these algorithms generally require a large number of iterations to converge, which entails considerable computational complexity and often requires fine-tuning of various parameters. With the development of deep learning, approximating the iterative algorithms with deep neural networks (DNNs) can significantly reduce the computational time. However, DNNs typically lead to black-box solvers, which requires amounts of data and extensive training time. To further overcome these challenges, deep-unfolding has emerged which incorporates the benefits of both deep learning and iterative algorithms, by unfolding the iterative algorithm into a layer-wise structure analogous to DNNs. In this article, we first go through the framework of deep-unfolding for transceiver design with matrix parameters and its recent advancements. Then, some endeavors in applying deep-unfolding approaches in next-generation advanced transceiver design are presented. Moreover, some open issues for future research are highlighted.Comment: 16 pages, 6 figure

    Robust Semantic Communications Against Semantic Noise

    Full text link
    Although the semantic communications have exhibited satisfactory performance in a large number of tasks, the impact of semantic noise and the robustness of the systems have not been well investigated. Semantic noise is a particular kind of noise in semantic communication systems, which refers to the misleading between the intended semantic symbols and received ones. In this paper, we first propose a framework for the robust end-to-end semantic communication systems to combat the semantic noise. Particularly, we analyze the causes of semantic noise and propose a practical method to generate it. To remove the effect of semantic noise, adversarial training is proposed to incorporate the samples with semantic noise in the training dataset. Then, the masked autoencoder (MAE) is designed as the architecture of a robust semantic communication system, where a portion of the input is masked. To further improve the robustness of semantic communication systems, we firstly employ the vector quantization-variational autoencoder (VQ-VAE) to design a discrete codebook shared by the transmitter and the receiver for encoded feature representation. Thus, the transmitter simply needs to transmit the indices of these features in the codebook. Simulation results show that our proposed method significantly improves the robustness of semantic communication systems against semantic noise with significant reduction on the transmission overhead.Comment: 7 pages, 6 figure
    corecore